Step |
Hyp |
Ref |
Expression |
1 |
|
normlem7t.1 |
|- A e. ~H |
2 |
|
normlem7t.2 |
|- B e. ~H |
3 |
|
fveq2 |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( * ` S ) = ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) ) |
4 |
3
|
oveq1d |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( * ` S ) x. ( A .ih B ) ) = ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) ) |
5 |
|
oveq1 |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( S x. ( B .ih A ) ) = ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) |
6 |
4 5
|
oveq12d |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( ( * ` S ) x. ( A .ih B ) ) + ( S x. ( B .ih A ) ) ) = ( ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) + ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) ) |
7 |
6
|
breq1d |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( ( ( * ` S ) x. ( A .ih B ) ) + ( S x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) <-> ( ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) + ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) ) |
8 |
|
eleq1 |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( S e. CC <-> if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC ) ) |
9 |
|
fveq2 |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( abs ` S ) = ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) ) |
10 |
9
|
eqeq1d |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( abs ` S ) = 1 <-> ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) |
11 |
8 10
|
anbi12d |
|- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( S e. CC /\ ( abs ` S ) = 1 ) <-> ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC /\ ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) ) |
12 |
|
eleq1 |
|- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( 1 e. CC <-> if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC ) ) |
13 |
|
fveq2 |
|- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( abs ` 1 ) = ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) ) |
14 |
13
|
eqeq1d |
|- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( abs ` 1 ) = 1 <-> ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) |
15 |
12 14
|
anbi12d |
|- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( 1 e. CC /\ ( abs ` 1 ) = 1 ) <-> ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC /\ ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
18 |
16 17
|
pm3.2i |
|- ( 1 e. CC /\ ( abs ` 1 ) = 1 ) |
19 |
11 15 18
|
elimhyp |
|- ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC /\ ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) |
20 |
19
|
simpli |
|- if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC |
21 |
19
|
simpri |
|- ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 |
22 |
20 1 2 21
|
normlem7 |
|- ( ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) + ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) |
23 |
7 22
|
dedth |
|- ( ( S e. CC /\ ( abs ` S ) = 1 ) -> ( ( ( * ` S ) x. ( A .ih B ) ) + ( S x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |