Step |
Hyp |
Ref |
Expression |
1 |
|
normlem8.1 |
|- A e. ~H |
2 |
|
normlem8.2 |
|- B e. ~H |
3 |
|
normlem8.3 |
|- C e. ~H |
4 |
|
normlem8.4 |
|- D e. ~H |
5 |
1 2
|
hvsubvali |
|- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
6 |
3 4
|
hvsubvali |
|- ( C -h D ) = ( C +h ( -u 1 .h D ) ) |
7 |
5 6
|
oveq12i |
|- ( ( A -h B ) .ih ( C -h D ) ) = ( ( A +h ( -u 1 .h B ) ) .ih ( C +h ( -u 1 .h D ) ) ) |
8 |
|
neg1cn |
|- -u 1 e. CC |
9 |
8 2
|
hvmulcli |
|- ( -u 1 .h B ) e. ~H |
10 |
8 4
|
hvmulcli |
|- ( -u 1 .h D ) e. ~H |
11 |
1 9 3 10
|
normlem8 |
|- ( ( A +h ( -u 1 .h B ) ) .ih ( C +h ( -u 1 .h D ) ) ) = ( ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) + ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) ) |
12 |
|
ax-his3 |
|- ( ( -u 1 e. CC /\ B e. ~H /\ ( -u 1 .h D ) e. ~H ) -> ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) = ( -u 1 x. ( B .ih ( -u 1 .h D ) ) ) ) |
13 |
8 2 10 12
|
mp3an |
|- ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) = ( -u 1 x. ( B .ih ( -u 1 .h D ) ) ) |
14 |
|
his5 |
|- ( ( -u 1 e. CC /\ B e. ~H /\ D e. ~H ) -> ( B .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( B .ih D ) ) ) |
15 |
8 2 4 14
|
mp3an |
|- ( B .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( B .ih D ) ) |
16 |
15
|
oveq2i |
|- ( -u 1 x. ( B .ih ( -u 1 .h D ) ) ) = ( -u 1 x. ( ( * ` -u 1 ) x. ( B .ih D ) ) ) |
17 |
|
neg1rr |
|- -u 1 e. RR |
18 |
|
cjre |
|- ( -u 1 e. RR -> ( * ` -u 1 ) = -u 1 ) |
19 |
17 18
|
ax-mp |
|- ( * ` -u 1 ) = -u 1 |
20 |
19
|
oveq2i |
|- ( -u 1 x. ( * ` -u 1 ) ) = ( -u 1 x. -u 1 ) |
21 |
|
ax-1cn |
|- 1 e. CC |
22 |
21 21
|
mul2negi |
|- ( -u 1 x. -u 1 ) = ( 1 x. 1 ) |
23 |
21
|
mulid2i |
|- ( 1 x. 1 ) = 1 |
24 |
20 22 23
|
3eqtri |
|- ( -u 1 x. ( * ` -u 1 ) ) = 1 |
25 |
24
|
oveq1i |
|- ( ( -u 1 x. ( * ` -u 1 ) ) x. ( B .ih D ) ) = ( 1 x. ( B .ih D ) ) |
26 |
8
|
cjcli |
|- ( * ` -u 1 ) e. CC |
27 |
2 4
|
hicli |
|- ( B .ih D ) e. CC |
28 |
8 26 27
|
mulassi |
|- ( ( -u 1 x. ( * ` -u 1 ) ) x. ( B .ih D ) ) = ( -u 1 x. ( ( * ` -u 1 ) x. ( B .ih D ) ) ) |
29 |
27
|
mulid2i |
|- ( 1 x. ( B .ih D ) ) = ( B .ih D ) |
30 |
25 28 29
|
3eqtr3i |
|- ( -u 1 x. ( ( * ` -u 1 ) x. ( B .ih D ) ) ) = ( B .ih D ) |
31 |
13 16 30
|
3eqtri |
|- ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) = ( B .ih D ) |
32 |
31
|
oveq2i |
|- ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) = ( ( A .ih C ) + ( B .ih D ) ) |
33 |
|
his5 |
|- ( ( -u 1 e. CC /\ A e. ~H /\ D e. ~H ) -> ( A .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( A .ih D ) ) ) |
34 |
8 1 4 33
|
mp3an |
|- ( A .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( A .ih D ) ) |
35 |
19
|
oveq1i |
|- ( ( * ` -u 1 ) x. ( A .ih D ) ) = ( -u 1 x. ( A .ih D ) ) |
36 |
1 4
|
hicli |
|- ( A .ih D ) e. CC |
37 |
36
|
mulm1i |
|- ( -u 1 x. ( A .ih D ) ) = -u ( A .ih D ) |
38 |
34 35 37
|
3eqtri |
|- ( A .ih ( -u 1 .h D ) ) = -u ( A .ih D ) |
39 |
|
ax-his3 |
|- ( ( -u 1 e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) ) |
40 |
8 2 3 39
|
mp3an |
|- ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) |
41 |
2 3
|
hicli |
|- ( B .ih C ) e. CC |
42 |
41
|
mulm1i |
|- ( -u 1 x. ( B .ih C ) ) = -u ( B .ih C ) |
43 |
40 42
|
eqtri |
|- ( ( -u 1 .h B ) .ih C ) = -u ( B .ih C ) |
44 |
38 43
|
oveq12i |
|- ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) = ( -u ( A .ih D ) + -u ( B .ih C ) ) |
45 |
36 41
|
negdii |
|- -u ( ( A .ih D ) + ( B .ih C ) ) = ( -u ( A .ih D ) + -u ( B .ih C ) ) |
46 |
44 45
|
eqtr4i |
|- ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) = -u ( ( A .ih D ) + ( B .ih C ) ) |
47 |
32 46
|
oveq12i |
|- ( ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) + ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) + -u ( ( A .ih D ) + ( B .ih C ) ) ) |
48 |
1 3
|
hicli |
|- ( A .ih C ) e. CC |
49 |
48 27
|
addcli |
|- ( ( A .ih C ) + ( B .ih D ) ) e. CC |
50 |
36 41
|
addcli |
|- ( ( A .ih D ) + ( B .ih C ) ) e. CC |
51 |
49 50
|
negsubi |
|- ( ( ( A .ih C ) + ( B .ih D ) ) + -u ( ( A .ih D ) + ( B .ih C ) ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) - ( ( A .ih D ) + ( B .ih C ) ) ) |
52 |
47 51
|
eqtri |
|- ( ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) + ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) - ( ( A .ih D ) + ( B .ih C ) ) ) |
53 |
7 11 52
|
3eqtri |
|- ( ( A -h B ) .ih ( C -h D ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) - ( ( A .ih D ) + ( B .ih C ) ) ) |