| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hv0cl |  |-  0h e. ~H | 
						
							| 2 |  | normsub |  |-  ( ( 0h e. ~H /\ A e. ~H ) -> ( normh ` ( 0h -h A ) ) = ( normh ` ( A -h 0h ) ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. ~H -> ( normh ` ( 0h -h A ) ) = ( normh ` ( A -h 0h ) ) ) | 
						
							| 4 |  | hv2neg |  |-  ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( A e. ~H -> ( normh ` ( 0h -h A ) ) = ( normh ` ( -u 1 .h A ) ) ) | 
						
							| 6 |  | hvsub0 |  |-  ( A e. ~H -> ( A -h 0h ) = A ) | 
						
							| 7 | 6 | fveq2d |  |-  ( A e. ~H -> ( normh ` ( A -h 0h ) ) = ( normh ` A ) ) | 
						
							| 8 | 3 5 7 | 3eqtr3d |  |-  ( A e. ~H -> ( normh ` ( -u 1 .h A ) ) = ( normh ` A ) ) |