Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
|- 0h e. ~H |
2 |
|
normsub |
|- ( ( 0h e. ~H /\ A e. ~H ) -> ( normh ` ( 0h -h A ) ) = ( normh ` ( A -h 0h ) ) ) |
3 |
1 2
|
mpan |
|- ( A e. ~H -> ( normh ` ( 0h -h A ) ) = ( normh ` ( A -h 0h ) ) ) |
4 |
|
hv2neg |
|- ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) ) |
5 |
4
|
fveq2d |
|- ( A e. ~H -> ( normh ` ( 0h -h A ) ) = ( normh ` ( -u 1 .h A ) ) ) |
6 |
|
hvsub0 |
|- ( A e. ~H -> ( A -h 0h ) = A ) |
7 |
6
|
fveq2d |
|- ( A e. ~H -> ( normh ` ( A -h 0h ) ) = ( normh ` A ) ) |
8 |
3 5 7
|
3eqtr3d |
|- ( A e. ~H -> ( normh ` ( -u 1 .h A ) ) = ( normh ` A ) ) |