| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvoveq1 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) | 
						
							| 3 |  | fvoveq1 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A +h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) ) | 
						
							| 5 | 2 4 | oveq12d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A -h B ) ) ^ 2 ) + ( ( normh ` ( A +h B ) ) ^ 2 ) ) = ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) + ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( 2 x. ( ( normh ` A ) ^ 2 ) ) = ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) ) | 
						
							| 10 | 5 9 | eqeq12d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( normh ` ( A -h B ) ) ^ 2 ) + ( ( normh ` ( A +h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) + ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) | 
						
							| 14 |  | oveq2 |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) | 
						
							| 17 | 13 16 | oveq12d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) + ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) ) = ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) + ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( normh ` B ) = ( normh ` if ( B e. ~H , B , 0h ) ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` B ) ^ 2 ) = ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( 2 x. ( ( normh ` B ) ^ 2 ) ) = ( 2 x. ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) ) | 
						
							| 22 | 17 21 | eqeq12d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) + ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) + ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) ) ) | 
						
							| 23 |  | ifhvhv0 |  |-  if ( A e. ~H , A , 0h ) e. ~H | 
						
							| 24 |  | ifhvhv0 |  |-  if ( B e. ~H , B , 0h ) e. ~H | 
						
							| 25 | 23 24 | normpari |  |-  ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) + ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` if ( B e. ~H , B , 0h ) ) ^ 2 ) ) ) | 
						
							| 26 | 10 22 25 | dedth2h |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( ( normh ` ( A -h B ) ) ^ 2 ) + ( ( normh ` ( A +h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) ) |