| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normpar2.1 |  |-  A e. ~H | 
						
							| 2 |  | normpar2.2 |  |-  B e. ~H | 
						
							| 3 |  | normpar2.3 |  |-  C e. ~H | 
						
							| 4 | 1 2 | hvaddcli |  |-  ( A +h B ) e. ~H | 
						
							| 5 |  | 2cn |  |-  2 e. CC | 
						
							| 6 | 5 3 | hvmulcli |  |-  ( 2 .h C ) e. ~H | 
						
							| 7 | 4 6 | hvsubcli |  |-  ( ( A +h B ) -h ( 2 .h C ) ) e. ~H | 
						
							| 8 | 7 | normcli |  |-  ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) e. RR | 
						
							| 9 | 8 | resqcli |  |-  ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) e. RR | 
						
							| 10 | 9 | recni |  |-  ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) e. CC | 
						
							| 11 | 1 2 | hvsubcli |  |-  ( A -h B ) e. ~H | 
						
							| 12 | 11 | normcli |  |-  ( normh ` ( A -h B ) ) e. RR | 
						
							| 13 | 12 | resqcli |  |-  ( ( normh ` ( A -h B ) ) ^ 2 ) e. RR | 
						
							| 14 | 13 | recni |  |-  ( ( normh ` ( A -h B ) ) ^ 2 ) e. CC | 
						
							| 15 |  | 4cn |  |-  4 e. CC | 
						
							| 16 | 1 3 | hvsubcli |  |-  ( A -h C ) e. ~H | 
						
							| 17 | 16 | normcli |  |-  ( normh ` ( A -h C ) ) e. RR | 
						
							| 18 | 17 | resqcli |  |-  ( ( normh ` ( A -h C ) ) ^ 2 ) e. RR | 
						
							| 19 | 18 | recni |  |-  ( ( normh ` ( A -h C ) ) ^ 2 ) e. CC | 
						
							| 20 | 15 19 | mulcli |  |-  ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) e. CC | 
						
							| 21 | 2 3 | hvsubcli |  |-  ( B -h C ) e. ~H | 
						
							| 22 | 21 | normcli |  |-  ( normh ` ( B -h C ) ) e. RR | 
						
							| 23 | 22 | resqcli |  |-  ( ( normh ` ( B -h C ) ) ^ 2 ) e. RR | 
						
							| 24 | 23 | recni |  |-  ( ( normh ` ( B -h C ) ) ^ 2 ) e. CC | 
						
							| 25 | 15 24 | mulcli |  |-  ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) e. CC | 
						
							| 26 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 27 | 20 25 5 26 | divdiri |  |-  ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) + ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) ) | 
						
							| 28 | 20 25 | addcomi |  |-  ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) ) | 
						
							| 29 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 30 | 29 6 | hvmulcli |  |-  ( -u 1 .h ( 2 .h C ) ) e. ~H | 
						
							| 31 | 29 11 | hvmulcli |  |-  ( -u 1 .h ( A -h B ) ) e. ~H | 
						
							| 32 | 4 30 31 | hvadd32i |  |-  ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 33 | 4 6 | hvsubvali |  |-  ( ( A +h B ) -h ( 2 .h C ) ) = ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 34 | 33 | oveq1i |  |-  ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( -u 1 .h ( A -h B ) ) ) | 
						
							| 35 | 5 2 | hvmulcli |  |-  ( 2 .h B ) e. ~H | 
						
							| 36 | 35 6 | hvsubvali |  |-  ( ( 2 .h B ) -h ( 2 .h C ) ) = ( ( 2 .h B ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 37 | 1 2 | hvcomi |  |-  ( A +h B ) = ( B +h A ) | 
						
							| 38 | 1 2 | hvnegdii |  |-  ( -u 1 .h ( A -h B ) ) = ( B -h A ) | 
						
							| 39 | 37 38 | oveq12i |  |-  ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( B +h A ) +h ( B -h A ) ) | 
						
							| 40 | 2 1 | hvsubcan2i |  |-  ( ( B +h A ) +h ( B -h A ) ) = ( 2 .h B ) | 
						
							| 41 | 39 40 | eqtri |  |-  ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) = ( 2 .h B ) | 
						
							| 42 | 41 | oveq1i |  |-  ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) = ( ( 2 .h B ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 43 | 36 42 | eqtr4i |  |-  ( ( 2 .h B ) -h ( 2 .h C ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 44 | 32 34 43 | 3eqtr4i |  |-  ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( 2 .h B ) -h ( 2 .h C ) ) | 
						
							| 45 | 7 11 | hvsubvali |  |-  ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) = ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) | 
						
							| 46 | 5 2 3 | hvsubdistr1i |  |-  ( 2 .h ( B -h C ) ) = ( ( 2 .h B ) -h ( 2 .h C ) ) | 
						
							| 47 | 44 45 46 | 3eqtr4i |  |-  ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) = ( 2 .h ( B -h C ) ) | 
						
							| 48 | 47 | fveq2i |  |-  ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) = ( normh ` ( 2 .h ( B -h C ) ) ) | 
						
							| 49 | 5 21 | norm-iii-i |  |-  ( normh ` ( 2 .h ( B -h C ) ) ) = ( ( abs ` 2 ) x. ( normh ` ( B -h C ) ) ) | 
						
							| 50 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 51 |  | 2re |  |-  2 e. RR | 
						
							| 52 | 51 | absidi |  |-  ( 0 <_ 2 -> ( abs ` 2 ) = 2 ) | 
						
							| 53 | 50 52 | ax-mp |  |-  ( abs ` 2 ) = 2 | 
						
							| 54 | 53 | oveq1i |  |-  ( ( abs ` 2 ) x. ( normh ` ( B -h C ) ) ) = ( 2 x. ( normh ` ( B -h C ) ) ) | 
						
							| 55 | 48 49 54 | 3eqtri |  |-  ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) = ( 2 x. ( normh ` ( B -h C ) ) ) | 
						
							| 56 | 55 | oveq1i |  |-  ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) = ( ( 2 x. ( normh ` ( B -h C ) ) ) ^ 2 ) | 
						
							| 57 | 22 | recni |  |-  ( normh ` ( B -h C ) ) e. CC | 
						
							| 58 | 5 57 | sqmuli |  |-  ( ( 2 x. ( normh ` ( B -h C ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) | 
						
							| 59 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 60 | 59 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) = ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) | 
						
							| 61 | 56 58 60 | 3eqtri |  |-  ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) = ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) | 
						
							| 62 | 1 2 | hvsubcan2i |  |-  ( ( A +h B ) +h ( A -h B ) ) = ( 2 .h A ) | 
						
							| 63 | 62 | oveq1i |  |-  ( ( ( A +h B ) +h ( A -h B ) ) +h ( -u 1 .h ( 2 .h C ) ) ) = ( ( 2 .h A ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 64 | 4 30 11 | hvadd32i |  |-  ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) = ( ( ( A +h B ) +h ( A -h B ) ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 65 | 5 1 | hvmulcli |  |-  ( 2 .h A ) e. ~H | 
						
							| 66 | 65 6 | hvsubvali |  |-  ( ( 2 .h A ) -h ( 2 .h C ) ) = ( ( 2 .h A ) +h ( -u 1 .h ( 2 .h C ) ) ) | 
						
							| 67 | 63 64 66 | 3eqtr4i |  |-  ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) = ( ( 2 .h A ) -h ( 2 .h C ) ) | 
						
							| 68 | 33 | oveq1i |  |-  ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) | 
						
							| 69 | 5 1 3 | hvsubdistr1i |  |-  ( 2 .h ( A -h C ) ) = ( ( 2 .h A ) -h ( 2 .h C ) ) | 
						
							| 70 | 67 68 69 | 3eqtr4i |  |-  ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) = ( 2 .h ( A -h C ) ) | 
						
							| 71 | 70 | fveq2i |  |-  ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) = ( normh ` ( 2 .h ( A -h C ) ) ) | 
						
							| 72 | 5 16 | norm-iii-i |  |-  ( normh ` ( 2 .h ( A -h C ) ) ) = ( ( abs ` 2 ) x. ( normh ` ( A -h C ) ) ) | 
						
							| 73 | 53 | oveq1i |  |-  ( ( abs ` 2 ) x. ( normh ` ( A -h C ) ) ) = ( 2 x. ( normh ` ( A -h C ) ) ) | 
						
							| 74 | 71 72 73 | 3eqtri |  |-  ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) = ( 2 x. ( normh ` ( A -h C ) ) ) | 
						
							| 75 | 74 | oveq1i |  |-  ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) = ( ( 2 x. ( normh ` ( A -h C ) ) ) ^ 2 ) | 
						
							| 76 | 17 | recni |  |-  ( normh ` ( A -h C ) ) e. CC | 
						
							| 77 | 5 76 | sqmuli |  |-  ( ( 2 x. ( normh ` ( A -h C ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) | 
						
							| 78 | 59 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) = ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) | 
						
							| 79 | 75 77 78 | 3eqtri |  |-  ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) = ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) | 
						
							| 80 | 61 79 | oveq12i |  |-  ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) = ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) ) | 
						
							| 81 | 28 80 | eqtr4i |  |-  ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) | 
						
							| 82 | 7 11 | normpari |  |-  ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) | 
						
							| 83 | 81 82 | eqtri |  |-  ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) | 
						
							| 84 | 83 | oveq1i |  |-  ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) / 2 ) | 
						
							| 85 | 5 10 | mulcli |  |-  ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) e. CC | 
						
							| 86 | 5 14 | mulcli |  |-  ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) e. CC | 
						
							| 87 | 85 86 5 26 | divdiri |  |-  ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) + ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) ) | 
						
							| 88 | 10 5 26 | divcan3i |  |-  ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) = ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) | 
						
							| 89 | 14 5 26 | divcan3i |  |-  ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) = ( ( normh ` ( A -h B ) ) ^ 2 ) | 
						
							| 90 | 88 89 | oveq12i |  |-  ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) + ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) ) = ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) | 
						
							| 91 | 84 87 90 | 3eqtri |  |-  ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) | 
						
							| 92 | 15 19 5 26 | div23i |  |-  ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) = ( ( 4 / 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) | 
						
							| 93 |  | 4d2e2 |  |-  ( 4 / 2 ) = 2 | 
						
							| 94 | 93 | oveq1i |  |-  ( ( 4 / 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) = ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) | 
						
							| 95 | 92 94 | eqtri |  |-  ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) = ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) | 
						
							| 96 | 15 24 5 26 | div23i |  |-  ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) = ( ( 4 / 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) | 
						
							| 97 | 93 | oveq1i |  |-  ( ( 4 / 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) = ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) | 
						
							| 98 | 96 97 | eqtri |  |-  ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) = ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) | 
						
							| 99 | 95 98 | oveq12i |  |-  ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) + ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) ) = ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) | 
						
							| 100 | 27 91 99 | 3eqtr3i |  |-  ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) | 
						
							| 101 | 10 14 100 | mvlladdi |  |-  ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) - ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) |