Step |
Hyp |
Ref |
Expression |
1 |
|
normpar2.1 |
|- A e. ~H |
2 |
|
normpar2.2 |
|- B e. ~H |
3 |
|
normpar2.3 |
|- C e. ~H |
4 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
5 |
|
2cn |
|- 2 e. CC |
6 |
5 3
|
hvmulcli |
|- ( 2 .h C ) e. ~H |
7 |
4 6
|
hvsubcli |
|- ( ( A +h B ) -h ( 2 .h C ) ) e. ~H |
8 |
7
|
normcli |
|- ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) e. RR |
9 |
8
|
resqcli |
|- ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) e. RR |
10 |
9
|
recni |
|- ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) e. CC |
11 |
1 2
|
hvsubcli |
|- ( A -h B ) e. ~H |
12 |
11
|
normcli |
|- ( normh ` ( A -h B ) ) e. RR |
13 |
12
|
resqcli |
|- ( ( normh ` ( A -h B ) ) ^ 2 ) e. RR |
14 |
13
|
recni |
|- ( ( normh ` ( A -h B ) ) ^ 2 ) e. CC |
15 |
|
4cn |
|- 4 e. CC |
16 |
1 3
|
hvsubcli |
|- ( A -h C ) e. ~H |
17 |
16
|
normcli |
|- ( normh ` ( A -h C ) ) e. RR |
18 |
17
|
resqcli |
|- ( ( normh ` ( A -h C ) ) ^ 2 ) e. RR |
19 |
18
|
recni |
|- ( ( normh ` ( A -h C ) ) ^ 2 ) e. CC |
20 |
15 19
|
mulcli |
|- ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) e. CC |
21 |
2 3
|
hvsubcli |
|- ( B -h C ) e. ~H |
22 |
21
|
normcli |
|- ( normh ` ( B -h C ) ) e. RR |
23 |
22
|
resqcli |
|- ( ( normh ` ( B -h C ) ) ^ 2 ) e. RR |
24 |
23
|
recni |
|- ( ( normh ` ( B -h C ) ) ^ 2 ) e. CC |
25 |
15 24
|
mulcli |
|- ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) e. CC |
26 |
|
2ne0 |
|- 2 =/= 0 |
27 |
20 25 5 26
|
divdiri |
|- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) + ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) ) |
28 |
20 25
|
addcomi |
|- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) ) |
29 |
|
neg1cn |
|- -u 1 e. CC |
30 |
29 6
|
hvmulcli |
|- ( -u 1 .h ( 2 .h C ) ) e. ~H |
31 |
29 11
|
hvmulcli |
|- ( -u 1 .h ( A -h B ) ) e. ~H |
32 |
4 30 31
|
hvadd32i |
|- ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) |
33 |
4 6
|
hvsubvali |
|- ( ( A +h B ) -h ( 2 .h C ) ) = ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) |
34 |
33
|
oveq1i |
|- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( -u 1 .h ( A -h B ) ) ) |
35 |
5 2
|
hvmulcli |
|- ( 2 .h B ) e. ~H |
36 |
35 6
|
hvsubvali |
|- ( ( 2 .h B ) -h ( 2 .h C ) ) = ( ( 2 .h B ) +h ( -u 1 .h ( 2 .h C ) ) ) |
37 |
1 2
|
hvcomi |
|- ( A +h B ) = ( B +h A ) |
38 |
1 2
|
hvnegdii |
|- ( -u 1 .h ( A -h B ) ) = ( B -h A ) |
39 |
37 38
|
oveq12i |
|- ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( B +h A ) +h ( B -h A ) ) |
40 |
2 1
|
hvsubcan2i |
|- ( ( B +h A ) +h ( B -h A ) ) = ( 2 .h B ) |
41 |
39 40
|
eqtri |
|- ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) = ( 2 .h B ) |
42 |
41
|
oveq1i |
|- ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) = ( ( 2 .h B ) +h ( -u 1 .h ( 2 .h C ) ) ) |
43 |
36 42
|
eqtr4i |
|- ( ( 2 .h B ) -h ( 2 .h C ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) |
44 |
32 34 43
|
3eqtr4i |
|- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( 2 .h B ) -h ( 2 .h C ) ) |
45 |
7 11
|
hvsubvali |
|- ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) = ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) |
46 |
5 2 3
|
hvsubdistr1i |
|- ( 2 .h ( B -h C ) ) = ( ( 2 .h B ) -h ( 2 .h C ) ) |
47 |
44 45 46
|
3eqtr4i |
|- ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) = ( 2 .h ( B -h C ) ) |
48 |
47
|
fveq2i |
|- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) = ( normh ` ( 2 .h ( B -h C ) ) ) |
49 |
5 21
|
norm-iii-i |
|- ( normh ` ( 2 .h ( B -h C ) ) ) = ( ( abs ` 2 ) x. ( normh ` ( B -h C ) ) ) |
50 |
|
0le2 |
|- 0 <_ 2 |
51 |
|
2re |
|- 2 e. RR |
52 |
51
|
absidi |
|- ( 0 <_ 2 -> ( abs ` 2 ) = 2 ) |
53 |
50 52
|
ax-mp |
|- ( abs ` 2 ) = 2 |
54 |
53
|
oveq1i |
|- ( ( abs ` 2 ) x. ( normh ` ( B -h C ) ) ) = ( 2 x. ( normh ` ( B -h C ) ) ) |
55 |
48 49 54
|
3eqtri |
|- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) = ( 2 x. ( normh ` ( B -h C ) ) ) |
56 |
55
|
oveq1i |
|- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) = ( ( 2 x. ( normh ` ( B -h C ) ) ) ^ 2 ) |
57 |
22
|
recni |
|- ( normh ` ( B -h C ) ) e. CC |
58 |
5 57
|
sqmuli |
|- ( ( 2 x. ( normh ` ( B -h C ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
59 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
60 |
59
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) = ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
61 |
56 58 60
|
3eqtri |
|- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) = ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
62 |
1 2
|
hvsubcan2i |
|- ( ( A +h B ) +h ( A -h B ) ) = ( 2 .h A ) |
63 |
62
|
oveq1i |
|- ( ( ( A +h B ) +h ( A -h B ) ) +h ( -u 1 .h ( 2 .h C ) ) ) = ( ( 2 .h A ) +h ( -u 1 .h ( 2 .h C ) ) ) |
64 |
4 30 11
|
hvadd32i |
|- ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) = ( ( ( A +h B ) +h ( A -h B ) ) +h ( -u 1 .h ( 2 .h C ) ) ) |
65 |
5 1
|
hvmulcli |
|- ( 2 .h A ) e. ~H |
66 |
65 6
|
hvsubvali |
|- ( ( 2 .h A ) -h ( 2 .h C ) ) = ( ( 2 .h A ) +h ( -u 1 .h ( 2 .h C ) ) ) |
67 |
63 64 66
|
3eqtr4i |
|- ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) = ( ( 2 .h A ) -h ( 2 .h C ) ) |
68 |
33
|
oveq1i |
|- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) |
69 |
5 1 3
|
hvsubdistr1i |
|- ( 2 .h ( A -h C ) ) = ( ( 2 .h A ) -h ( 2 .h C ) ) |
70 |
67 68 69
|
3eqtr4i |
|- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) = ( 2 .h ( A -h C ) ) |
71 |
70
|
fveq2i |
|- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) = ( normh ` ( 2 .h ( A -h C ) ) ) |
72 |
5 16
|
norm-iii-i |
|- ( normh ` ( 2 .h ( A -h C ) ) ) = ( ( abs ` 2 ) x. ( normh ` ( A -h C ) ) ) |
73 |
53
|
oveq1i |
|- ( ( abs ` 2 ) x. ( normh ` ( A -h C ) ) ) = ( 2 x. ( normh ` ( A -h C ) ) ) |
74 |
71 72 73
|
3eqtri |
|- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) = ( 2 x. ( normh ` ( A -h C ) ) ) |
75 |
74
|
oveq1i |
|- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) = ( ( 2 x. ( normh ` ( A -h C ) ) ) ^ 2 ) |
76 |
17
|
recni |
|- ( normh ` ( A -h C ) ) e. CC |
77 |
5 76
|
sqmuli |
|- ( ( 2 x. ( normh ` ( A -h C ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
78 |
59
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) = ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
79 |
75 77 78
|
3eqtri |
|- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) = ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
80 |
61 79
|
oveq12i |
|- ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) = ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) ) |
81 |
28 80
|
eqtr4i |
|- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) |
82 |
7 11
|
normpari |
|- ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
83 |
81 82
|
eqtri |
|- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
84 |
83
|
oveq1i |
|- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) / 2 ) |
85 |
5 10
|
mulcli |
|- ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) e. CC |
86 |
5 14
|
mulcli |
|- ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) e. CC |
87 |
85 86 5 26
|
divdiri |
|- ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) + ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) ) |
88 |
10 5 26
|
divcan3i |
|- ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) = ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) |
89 |
14 5 26
|
divcan3i |
|- ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) = ( ( normh ` ( A -h B ) ) ^ 2 ) |
90 |
88 89
|
oveq12i |
|- ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) + ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) ) = ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) |
91 |
84 87 90
|
3eqtri |
|- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) |
92 |
15 19 5 26
|
div23i |
|- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) = ( ( 4 / 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
93 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
94 |
93
|
oveq1i |
|- ( ( 4 / 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) = ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
95 |
92 94
|
eqtri |
|- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) = ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
96 |
15 24 5 26
|
div23i |
|- ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) = ( ( 4 / 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
97 |
93
|
oveq1i |
|- ( ( 4 / 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) = ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
98 |
96 97
|
eqtri |
|- ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) = ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
99 |
95 98
|
oveq12i |
|- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) + ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) ) = ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) |
100 |
27 91 99
|
3eqtr3i |
|- ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) |
101 |
10 14 100
|
mvlladdi |
|- ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) - ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) |