Step |
Hyp |
Ref |
Expression |
1 |
|
normpar.1 |
|- A e. ~H |
2 |
|
normpar.2 |
|- B e. ~H |
3 |
1 2
|
hvsubcli |
|- ( A -h B ) e. ~H |
4 |
3
|
normsqi |
|- ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) |
5 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
6 |
5
|
normsqi |
|- ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( A +h B ) .ih ( A +h B ) ) |
7 |
4 6
|
oveq12i |
|- ( ( ( normh ` ( A -h B ) ) ^ 2 ) + ( ( normh ` ( A +h B ) ) ^ 2 ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) |
8 |
1
|
normsqi |
|- ( ( normh ` A ) ^ 2 ) = ( A .ih A ) |
9 |
8
|
oveq2i |
|- ( 2 x. ( ( normh ` A ) ^ 2 ) ) = ( 2 x. ( A .ih A ) ) |
10 |
1 1
|
hicli |
|- ( A .ih A ) e. CC |
11 |
10
|
2timesi |
|- ( 2 x. ( A .ih A ) ) = ( ( A .ih A ) + ( A .ih A ) ) |
12 |
9 11
|
eqtri |
|- ( 2 x. ( ( normh ` A ) ^ 2 ) ) = ( ( A .ih A ) + ( A .ih A ) ) |
13 |
2
|
normsqi |
|- ( ( normh ` B ) ^ 2 ) = ( B .ih B ) |
14 |
13
|
oveq2i |
|- ( 2 x. ( ( normh ` B ) ^ 2 ) ) = ( 2 x. ( B .ih B ) ) |
15 |
2 2
|
hicli |
|- ( B .ih B ) e. CC |
16 |
15
|
2timesi |
|- ( 2 x. ( B .ih B ) ) = ( ( B .ih B ) + ( B .ih B ) ) |
17 |
14 16
|
eqtri |
|- ( 2 x. ( ( normh ` B ) ^ 2 ) ) = ( ( B .ih B ) + ( B .ih B ) ) |
18 |
12 17
|
oveq12i |
|- ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) |
19 |
1 2 1 2
|
normlem9 |
|- ( ( A -h B ) .ih ( A -h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) |
20 |
10 15
|
addcli |
|- ( ( A .ih A ) + ( B .ih B ) ) e. CC |
21 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
22 |
2 1
|
hicli |
|- ( B .ih A ) e. CC |
23 |
21 22
|
addcli |
|- ( ( A .ih B ) + ( B .ih A ) ) e. CC |
24 |
20 23
|
negsubi |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) |
25 |
19 24
|
eqtr4i |
|- ( ( A -h B ) .ih ( A -h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) |
26 |
1 2 1 2
|
normlem8 |
|- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) |
27 |
25 26
|
oveq12i |
|- ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) = ( ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) + ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) ) |
28 |
23
|
negcli |
|- -u ( ( A .ih B ) + ( B .ih A ) ) e. CC |
29 |
20 28 20 23
|
add42i |
|- ( ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) + ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) ) = ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) ) |
30 |
23
|
negidi |
|- ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) = 0 |
31 |
30
|
oveq2i |
|- ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) ) = ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + 0 ) |
32 |
20 20
|
addcli |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) e. CC |
33 |
32
|
addid1i |
|- ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + 0 ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) |
34 |
10 15 10 15
|
add4i |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) |
35 |
31 33 34
|
3eqtri |
|- ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) |
36 |
27 29 35
|
3eqtri |
|- ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) |
37 |
18 36
|
eqtr4i |
|- ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) |
38 |
7 37
|
eqtr4i |
|- ( ( ( normh ` ( A -h B ) ) ^ 2 ) + ( ( normh ` ( A +h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) |