| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normpar.1 |  |-  A e. ~H | 
						
							| 2 |  | normpar.2 |  |-  B e. ~H | 
						
							| 3 | 1 2 | hvsubcli |  |-  ( A -h B ) e. ~H | 
						
							| 4 | 3 | normsqi |  |-  ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) | 
						
							| 5 | 1 2 | hvaddcli |  |-  ( A +h B ) e. ~H | 
						
							| 6 | 5 | normsqi |  |-  ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( A +h B ) .ih ( A +h B ) ) | 
						
							| 7 | 4 6 | oveq12i |  |-  ( ( ( normh ` ( A -h B ) ) ^ 2 ) + ( ( normh ` ( A +h B ) ) ^ 2 ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) | 
						
							| 8 | 1 | normsqi |  |-  ( ( normh ` A ) ^ 2 ) = ( A .ih A ) | 
						
							| 9 | 8 | oveq2i |  |-  ( 2 x. ( ( normh ` A ) ^ 2 ) ) = ( 2 x. ( A .ih A ) ) | 
						
							| 10 | 1 1 | hicli |  |-  ( A .ih A ) e. CC | 
						
							| 11 | 10 | 2timesi |  |-  ( 2 x. ( A .ih A ) ) = ( ( A .ih A ) + ( A .ih A ) ) | 
						
							| 12 | 9 11 | eqtri |  |-  ( 2 x. ( ( normh ` A ) ^ 2 ) ) = ( ( A .ih A ) + ( A .ih A ) ) | 
						
							| 13 | 2 | normsqi |  |-  ( ( normh ` B ) ^ 2 ) = ( B .ih B ) | 
						
							| 14 | 13 | oveq2i |  |-  ( 2 x. ( ( normh ` B ) ^ 2 ) ) = ( 2 x. ( B .ih B ) ) | 
						
							| 15 | 2 2 | hicli |  |-  ( B .ih B ) e. CC | 
						
							| 16 | 15 | 2timesi |  |-  ( 2 x. ( B .ih B ) ) = ( ( B .ih B ) + ( B .ih B ) ) | 
						
							| 17 | 14 16 | eqtri |  |-  ( 2 x. ( ( normh ` B ) ^ 2 ) ) = ( ( B .ih B ) + ( B .ih B ) ) | 
						
							| 18 | 12 17 | oveq12i |  |-  ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) | 
						
							| 19 | 1 2 1 2 | normlem9 |  |-  ( ( A -h B ) .ih ( A -h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) | 
						
							| 20 | 10 15 | addcli |  |-  ( ( A .ih A ) + ( B .ih B ) ) e. CC | 
						
							| 21 | 1 2 | hicli |  |-  ( A .ih B ) e. CC | 
						
							| 22 | 2 1 | hicli |  |-  ( B .ih A ) e. CC | 
						
							| 23 | 21 22 | addcli |  |-  ( ( A .ih B ) + ( B .ih A ) ) e. CC | 
						
							| 24 | 20 23 | negsubi |  |-  ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) | 
						
							| 25 | 19 24 | eqtr4i |  |-  ( ( A -h B ) .ih ( A -h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) | 
						
							| 26 | 1 2 1 2 | normlem8 |  |-  ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) | 
						
							| 27 | 25 26 | oveq12i |  |-  ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) = ( ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) + ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) ) | 
						
							| 28 | 23 | negcli |  |-  -u ( ( A .ih B ) + ( B .ih A ) ) e. CC | 
						
							| 29 | 20 28 20 23 | add42i |  |-  ( ( ( ( A .ih A ) + ( B .ih B ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) + ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) ) = ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) ) | 
						
							| 30 | 23 | negidi |  |-  ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) = 0 | 
						
							| 31 | 30 | oveq2i |  |-  ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) ) = ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + 0 ) | 
						
							| 32 | 20 20 | addcli |  |-  ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) e. CC | 
						
							| 33 | 32 | addridi |  |-  ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + 0 ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) | 
						
							| 34 | 10 15 10 15 | add4i |  |-  ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) | 
						
							| 35 | 31 33 34 | 3eqtri |  |-  ( ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih A ) + ( B .ih B ) ) ) + ( ( ( A .ih B ) + ( B .ih A ) ) + -u ( ( A .ih B ) + ( B .ih A ) ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) | 
						
							| 36 | 27 29 35 | 3eqtri |  |-  ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) = ( ( ( A .ih A ) + ( A .ih A ) ) + ( ( B .ih B ) + ( B .ih B ) ) ) | 
						
							| 37 | 18 36 | eqtr4i |  |-  ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) + ( ( A +h B ) .ih ( A +h B ) ) ) | 
						
							| 38 | 7 37 | eqtr4i |  |-  ( ( ( normh ` ( A -h B ) ) ^ 2 ) + ( ( normh ` ( A +h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` A ) ^ 2 ) ) + ( 2 x. ( ( normh ` B ) ^ 2 ) ) ) |