| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normsub.1 |
|- A e. ~H |
| 2 |
|
normsub.2 |
|- B e. ~H |
| 3 |
1 2 1 2
|
normlem8 |
|- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) |
| 4 |
|
id |
|- ( ( A .ih B ) = 0 -> ( A .ih B ) = 0 ) |
| 5 |
|
orthcom |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |
| 6 |
1 2 5
|
mp2an |
|- ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) |
| 7 |
6
|
biimpi |
|- ( ( A .ih B ) = 0 -> ( B .ih A ) = 0 ) |
| 8 |
4 7
|
oveq12d |
|- ( ( A .ih B ) = 0 -> ( ( A .ih B ) + ( B .ih A ) ) = ( 0 + 0 ) ) |
| 9 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 10 |
8 9
|
eqtrdi |
|- ( ( A .ih B ) = 0 -> ( ( A .ih B ) + ( B .ih A ) ) = 0 ) |
| 11 |
10
|
oveq2d |
|- ( ( A .ih B ) = 0 -> ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + 0 ) ) |
| 12 |
1 1
|
hicli |
|- ( A .ih A ) e. CC |
| 13 |
2 2
|
hicli |
|- ( B .ih B ) e. CC |
| 14 |
12 13
|
addcli |
|- ( ( A .ih A ) + ( B .ih B ) ) e. CC |
| 15 |
14
|
addridi |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + 0 ) = ( ( A .ih A ) + ( B .ih B ) ) |
| 16 |
11 15
|
eqtrdi |
|- ( ( A .ih B ) = 0 -> ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( A .ih A ) + ( B .ih B ) ) ) |
| 17 |
3 16
|
eqtrid |
|- ( ( A .ih B ) = 0 -> ( ( A +h B ) .ih ( A +h B ) ) = ( ( A .ih A ) + ( B .ih B ) ) ) |
| 18 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
| 19 |
18
|
normsqi |
|- ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( A +h B ) .ih ( A +h B ) ) |
| 20 |
1
|
normsqi |
|- ( ( normh ` A ) ^ 2 ) = ( A .ih A ) |
| 21 |
2
|
normsqi |
|- ( ( normh ` B ) ^ 2 ) = ( B .ih B ) |
| 22 |
20 21
|
oveq12i |
|- ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) = ( ( A .ih A ) + ( B .ih B ) ) |
| 23 |
17 19 22
|
3eqtr4g |
|- ( ( A .ih B ) = 0 -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |