Metamath Proof Explorer


Theorem normsq

Description: The square of a norm. (Contributed by NM, 12-May-2005) (New usage is discouraged.)

Ref Expression
Assertion normsq
|- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) )
2 1 oveq1d
 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) )
3 id
 |-  ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) )
4 3 3 oveq12d
 |-  ( A = if ( A e. ~H , A , 0h ) -> ( A .ih A ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) )
5 2 4 eqeq12d
 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) = ( A .ih A ) <-> ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) )
6 ifhvhv0
 |-  if ( A e. ~H , A , 0h ) e. ~H
7 6 normsqi
 |-  ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) )
8 5 7 dedth
 |-  ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) )