| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) | 
						
							| 3 |  | id |  |-  ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) | 
						
							| 4 | 3 3 | oveq12d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( A .ih A ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) = ( A .ih A ) <-> ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) ) | 
						
							| 6 |  | ifhvhv0 |  |-  if ( A e. ~H , A , 0h ) e. ~H | 
						
							| 7 | 6 | normsqi |  |-  ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) | 
						
							| 8 | 5 7 | dedth |  |-  ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |