Step |
Hyp |
Ref |
Expression |
1 |
|
normcl.1 |
|- A e. ~H |
2 |
|
normval |
|- ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) |
3 |
1 2
|
ax-mp |
|- ( normh ` A ) = ( sqrt ` ( A .ih A ) ) |
4 |
3
|
oveq1i |
|- ( ( normh ` A ) ^ 2 ) = ( ( sqrt ` ( A .ih A ) ) ^ 2 ) |
5 |
|
hiidge0 |
|- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
6 |
1 5
|
ax-mp |
|- 0 <_ ( A .ih A ) |
7 |
|
hiidrcl |
|- ( A e. ~H -> ( A .ih A ) e. RR ) |
8 |
1 7
|
ax-mp |
|- ( A .ih A ) e. RR |
9 |
8
|
sqsqrti |
|- ( 0 <_ ( A .ih A ) -> ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) ) |
10 |
6 9
|
ax-mp |
|- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) |
11 |
4 10
|
eqtri |
|- ( ( normh ` A ) ^ 2 ) = ( A .ih A ) |