| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvoveq1 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) = 0 <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( A = B <-> if ( A e. ~H , A , 0h ) = B ) ) | 
						
							| 4 | 2 3 | bibi12d |  |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A -h B ) ) = 0 <-> A = B ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 <-> if ( A e. ~H , A , 0h ) = B ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) | 
						
							| 6 | 5 | fveqeq2d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = 0 ) ) | 
						
							| 7 |  | eqeq2 |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) = B <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) | 
						
							| 8 | 6 7 | bibi12d |  |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 <-> if ( A e. ~H , A , 0h ) = B ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = 0 <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) ) | 
						
							| 9 |  | ifhvhv0 |  |-  if ( A e. ~H , A , 0h ) e. ~H | 
						
							| 10 |  | ifhvhv0 |  |-  if ( B e. ~H , B , 0h ) e. ~H | 
						
							| 11 | 9 10 | normsub0i |  |-  ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = 0 <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) | 
						
							| 12 | 4 8 11 | dedth2h |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( normh ` ( A -h B ) ) = 0 <-> A = B ) ) |