| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nosepon |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. On ) |
| 2 |
|
onelon |
|- ( ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. On /\ X e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> X e. On ) |
| 3 |
1 2
|
sylan |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ X e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> X e. On ) |
| 4 |
|
simpr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ X e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> X e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) |
| 5 |
|
fveq2 |
|- ( x = X -> ( A ` x ) = ( A ` X ) ) |
| 6 |
|
fveq2 |
|- ( x = X -> ( B ` x ) = ( B ` X ) ) |
| 7 |
5 6
|
neeq12d |
|- ( x = X -> ( ( A ` x ) =/= ( B ` x ) <-> ( A ` X ) =/= ( B ` X ) ) ) |
| 8 |
7
|
onnminsb |
|- ( X e. On -> ( X e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } -> -. ( A ` X ) =/= ( B ` X ) ) ) |
| 9 |
3 4 8
|
sylc |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ X e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> -. ( A ` X ) =/= ( B ` X ) ) |
| 10 |
|
df-ne |
|- ( ( A ` X ) =/= ( B ` X ) <-> -. ( A ` X ) = ( B ` X ) ) |
| 11 |
10
|
con2bii |
|- ( ( A ` X ) = ( B ` X ) <-> -. ( A ` X ) =/= ( B ` X ) ) |
| 12 |
9 11
|
sylibr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ X e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( A ` X ) = ( B ` X ) ) |