| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltso |
|- |
| 2 |
|
sotrine |
|- ( ( ( A =/= B <-> ( A |
| 3 |
1 2
|
mpan |
|- ( ( A e. No /\ B e. No ) -> ( A =/= B <-> ( A |
| 4 |
|
nosepnelem |
|- ( ( A e. No /\ B e. No /\ A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
| 5 |
4
|
3expia |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
| 6 |
|
nosepnelem |
|- ( ( B e. No /\ A e. No /\ B ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
| 7 |
|
necom |
|- ( ( A ` x ) =/= ( B ` x ) <-> ( B ` x ) =/= ( A ` x ) ) |
| 8 |
7
|
rabbii |
|- { x e. On | ( A ` x ) =/= ( B ` x ) } = { x e. On | ( B ` x ) =/= ( A ` x ) } |
| 9 |
8
|
inteqi |
|- |^| { x e. On | ( A ` x ) =/= ( B ` x ) } = |^| { x e. On | ( B ` x ) =/= ( A ` x ) } |
| 10 |
9
|
fveq2i |
|- ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) |
| 11 |
9
|
fveq2i |
|- ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) |
| 12 |
10 11
|
neeq12i |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
| 13 |
|
necom |
|- ( ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) <-> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
| 14 |
12 13
|
bitri |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
| 15 |
6 14
|
sylibr |
|- ( ( B e. No /\ A e. No /\ B ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
| 16 |
15
|
3expia |
|- ( ( B e. No /\ A e. No ) -> ( B ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
| 17 |
16
|
ancoms |
|- ( ( A e. No /\ B e. No ) -> ( B ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
| 18 |
5 17
|
jaod |
|- ( ( A e. No /\ B e. No ) -> ( ( A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
| 19 |
3 18
|
sylbid |
|- ( ( A e. No /\ B e. No ) -> ( A =/= B -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
| 20 |
19
|
3impia |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |