Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | notab | |- { x | -. ph } = ( _V \ { x | ph } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab | |- { x e. _V | -. ph } = { x | ( x e. _V /\ -. ph ) } |
|
2 | rabab | |- { x e. _V | -. ph } = { x | -. ph } |
|
3 | 1 2 | eqtr3i | |- { x | ( x e. _V /\ -. ph ) } = { x | -. ph } |
4 | difab | |- ( { x | x e. _V } \ { x | ph } ) = { x | ( x e. _V /\ -. ph ) } |
|
5 | abid2 | |- { x | x e. _V } = _V |
|
6 | 5 | difeq1i | |- ( { x | x e. _V } \ { x | ph } ) = ( _V \ { x | ph } ) |
7 | 4 6 | eqtr3i | |- { x | ( x e. _V /\ -. ph ) } = ( _V \ { x | ph } ) |
8 | 3 7 | eqtr3i | |- { x | -. ph } = ( _V \ { x | ph } ) |