Metamath Proof Explorer


Theorem notab

Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010)

Ref Expression
Assertion notab
|- { x | -. ph } = ( _V \ { x | ph } )

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. _V | -. ph } = { x | ( x e. _V /\ -. ph ) }
2 rabab
 |-  { x e. _V | -. ph } = { x | -. ph }
3 1 2 eqtr3i
 |-  { x | ( x e. _V /\ -. ph ) } = { x | -. ph }
4 difab
 |-  ( { x | x e. _V } \ { x | ph } ) = { x | ( x e. _V /\ -. ph ) }
5 abid2
 |-  { x | x e. _V } = _V
6 5 difeq1i
 |-  ( { x | x e. _V } \ { x | ph } ) = ( _V \ { x | ph } )
7 4 6 eqtr3i
 |-  { x | ( x e. _V /\ -. ph ) } = ( _V \ { x | ph } )
8 3 7 eqtr3i
 |-  { x | -. ph } = ( _V \ { x | ph } )