Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | notab | |- { x | -. ph } = ( _V \ { x | ph } ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rab |  |-  { x e. _V | -. ph } = { x | ( x e. _V /\ -. ph ) } | 
						|
| 2 | rabab |  |-  { x e. _V | -. ph } = { x | -. ph } | 
						|
| 3 | 1 2 | eqtr3i |  |-  { x | ( x e. _V /\ -. ph ) } = { x | -. ph } | 
						
| 4 | difab |  |-  ( { x | x e. _V } \ { x | ph } ) = { x | ( x e. _V /\ -. ph ) } | 
						|
| 5 | abid2 |  |-  { x | x e. _V } = _V | 
						|
| 6 | 5 | difeq1i |  |-  ( { x | x e. _V } \ { x | ph } ) = ( _V \ { x | ph } ) | 
						
| 7 | 4 6 | eqtr3i |  |-  { x | ( x e. _V /\ -. ph ) } = ( _V \ { x | ph } ) | 
						
| 8 | 3 7 | eqtr3i |  |-  { x | -. ph } = ( _V \ { x | ph } ) |