Description: Contraposition. Theorem *4.11 of WhiteheadRussell p. 117. (Contributed by NM, 21-May-1994) (Proof shortened by Wolf Lammen, 12-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | notbi | |- ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ( ph <-> ps ) -> ( ph <-> ps ) ) |
|
2 | 1 | notbid | |- ( ( ph <-> ps ) -> ( -. ph <-> -. ps ) ) |
3 | id | |- ( ( -. ph <-> -. ps ) -> ( -. ph <-> -. ps ) ) |
|
4 | 3 | con4bid | |- ( ( -. ph <-> -. ps ) -> ( ph <-> ps ) ) |
5 | 2 4 | impbii | |- ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) ) |