Description: Contraposition. Theorem *4.11 of WhiteheadRussell p. 117. (Contributed by NM, 21-May-1994) (Proof shortened by Wolf Lammen, 12-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | notbi | |- ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( ph <-> ps ) -> ( ph <-> ps ) ) |
|
| 2 | 1 | notbid | |- ( ( ph <-> ps ) -> ( -. ph <-> -. ps ) ) |
| 3 | id | |- ( ( -. ph <-> -. ps ) -> ( -. ph <-> -. ps ) ) |
|
| 4 | 3 | con4bid | |- ( ( -. ph <-> -. ps ) -> ( ph <-> ps ) ) |
| 5 | 2 4 | impbii | |- ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) ) |