Metamath Proof Explorer


Theorem notbid

Description: Deduction negating both sides of a logical equivalence. (Contributed by NM, 21-May-1994)

Ref Expression
Hypothesis notbid.1
|- ( ph -> ( ps <-> ch ) )
Assertion notbid
|- ( ph -> ( -. ps <-> -. ch ) )

Proof

Step Hyp Ref Expression
1 notbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 notnotb
 |-  ( ps <-> -. -. ps )
3 notnotb
 |-  ( ch <-> -. -. ch )
4 1 2 3 3bitr3g
 |-  ( ph -> ( -. -. ps <-> -. -. ch ) )
5 4 con4bid
 |-  ( ph -> ( -. ps <-> -. ch ) )