Metamath Proof Explorer


Theorem notfal

Description: A -. identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion notfal
|- ( -. F. <-> T. )

Proof

Step Hyp Ref Expression
1 fal
 |-  -. F.
2 1 bitru
 |-  ( -. F. <-> T. )