Metamath Proof Explorer


Theorem notnoti

Description: Inference associated with notnot . (Contributed by NM, 27-Feb-2008)

Ref Expression
Hypothesis notnoti.1
|- ph
Assertion notnoti
|- -. -. ph

Proof

Step Hyp Ref Expression
1 notnoti.1
 |-  ph
2 notnot
 |-  ( ph -> -. -. ph )
3 1 2 ax-mp
 |-  -. -. ph