Metamath Proof Explorer


Theorem notnotrALT

Description: Converse of double negation. Alternate proof of notnotr . This proof is notnotrALTVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion notnotrALT
|- ( -. -. ph -> ph )

Proof

Step Hyp Ref Expression
1 id
 |-  ( -. -. ph -> -. -. ph )
2 pm2.21
 |-  ( -. -. ph -> ( -. ph -> -. -. -. ph ) )
3 1 2 mt4d
 |-  ( -. -. ph -> ph )