Step |
Hyp |
Ref |
Expression |
1 |
|
difab |
|- ( { x | x e. A } \ { x | ph } ) = { x | ( x e. A /\ -. ph ) } |
2 |
|
difin |
|- ( A \ ( A i^i { x | ph } ) ) = ( A \ { x | ph } ) |
3 |
|
dfrab3 |
|- { x e. A | ph } = ( A i^i { x | ph } ) |
4 |
3
|
difeq2i |
|- ( A \ { x e. A | ph } ) = ( A \ ( A i^i { x | ph } ) ) |
5 |
|
abid2 |
|- { x | x e. A } = A |
6 |
5
|
difeq1i |
|- ( { x | x e. A } \ { x | ph } ) = ( A \ { x | ph } ) |
7 |
2 4 6
|
3eqtr4i |
|- ( A \ { x e. A | ph } ) = ( { x | x e. A } \ { x | ph } ) |
8 |
|
df-rab |
|- { x e. A | -. ph } = { x | ( x e. A /\ -. ph ) } |
9 |
1 7 8
|
3eqtr4i |
|- ( A \ { x e. A | ph } ) = { x e. A | -. ph } |