Metamath Proof Explorer


Theorem nottru

Description: A -. identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion nottru
|- ( -. T. <-> F. )

Proof

Step Hyp Ref Expression
1 df-fal
 |-  ( F. <-> -. T. )
2 1 bicomi
 |-  ( -. T. <-> F. )