Step |
Hyp |
Ref |
Expression |
1 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
2 |
1
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) |
3 |
|
addsubass |
|- ( ( ( A - B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( ( A - B ) + ( B - C ) ) ) |
4 |
2 3
|
syld3an1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( ( A - B ) + ( B - C ) ) ) |
5 |
|
npcan |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + B ) = A ) |
6 |
5
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( A - C ) ) |
7 |
6
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( A - C ) ) |
8 |
4 7
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( B - C ) ) = ( A - C ) ) |