Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npncan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + ( B - A ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npncan | |- ( ( A e. CC /\ B e. CC /\ A e. CC ) -> ( ( A - B ) + ( B - A ) ) = ( A - A ) ) |
|
| 2 | 1 | 3anidm13 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + ( B - A ) ) = ( A - A ) ) |
| 3 | subid | |- ( A e. CC -> ( A - A ) = 0 ) |
|
| 4 | 3 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A - A ) = 0 ) |
| 5 | 2 4 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + ( B - A ) ) = 0 ) |