Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
2 |
|
subcl |
|- ( ( C e. CC /\ A e. CC ) -> ( C - A ) e. CC ) |
3 |
2
|
ancoms |
|- ( ( A e. CC /\ C e. CC ) -> ( C - A ) e. CC ) |
4 |
3
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C - A ) e. CC ) |
5 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
6 |
|
addsub |
|- ( ( A e. CC /\ ( C - A ) e. CC /\ B e. CC ) -> ( ( A + ( C - A ) ) - B ) = ( ( A - B ) + ( C - A ) ) ) |
7 |
1 4 5 6
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( C - A ) ) - B ) = ( ( A - B ) + ( C - A ) ) ) |
8 |
|
pncan3 |
|- ( ( A e. CC /\ C e. CC ) -> ( A + ( C - A ) ) = C ) |
9 |
8
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( C - A ) ) = C ) |
10 |
9
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( C - A ) ) - B ) = ( C - B ) ) |
11 |
7 10
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( C - A ) ) = ( C - B ) ) |