| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
| 2 |
1
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. ZZ ) |
| 3 |
2
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. RR ) |
| 4 |
|
eluz2gt1 |
|- ( B e. ( ZZ>= ` 2 ) -> 1 < B ) |
| 5 |
4
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> 1 < B ) |
| 6 |
|
eluzelz |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) |
| 7 |
6
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. ZZ ) |
| 8 |
7
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. RR ) |
| 9 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
| 10 |
9
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. NN ) |
| 11 |
10
|
nngt0d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> 0 < A ) |
| 12 |
|
ltmulgt11 |
|- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
| 13 |
3 8 11 12
|
syl3anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
| 14 |
5 13
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A < ( A x. B ) ) |
| 15 |
3 14
|
ltned |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A =/= ( A x. B ) ) |
| 16 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) |
| 17 |
1 6 16
|
syl2an |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A || ( A x. B ) ) |
| 18 |
|
isprm4 |
|- ( ( A x. B ) e. Prime <-> ( ( A x. B ) e. ( ZZ>= ` 2 ) /\ A. x e. ( ZZ>= ` 2 ) ( x || ( A x. B ) -> x = ( A x. B ) ) ) ) |
| 19 |
18
|
simprbi |
|- ( ( A x. B ) e. Prime -> A. x e. ( ZZ>= ` 2 ) ( x || ( A x. B ) -> x = ( A x. B ) ) ) |
| 20 |
|
breq1 |
|- ( x = A -> ( x || ( A x. B ) <-> A || ( A x. B ) ) ) |
| 21 |
|
eqeq1 |
|- ( x = A -> ( x = ( A x. B ) <-> A = ( A x. B ) ) ) |
| 22 |
20 21
|
imbi12d |
|- ( x = A -> ( ( x || ( A x. B ) -> x = ( A x. B ) ) <-> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 23 |
22
|
rspcv |
|- ( A e. ( ZZ>= ` 2 ) -> ( A. x e. ( ZZ>= ` 2 ) ( x || ( A x. B ) -> x = ( A x. B ) ) -> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 24 |
19 23
|
syl5 |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A x. B ) e. Prime -> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 25 |
24
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A x. B ) e. Prime -> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 26 |
17 25
|
mpid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A x. B ) e. Prime -> A = ( A x. B ) ) ) |
| 27 |
26
|
necon3ad |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A =/= ( A x. B ) -> -. ( A x. B ) e. Prime ) ) |
| 28 |
15 27
|
mpd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. ( A x. B ) e. Prime ) |