Description: No prime number divides 1. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Mario Carneiro, 2-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nprmdvds1 | |- ( P e. Prime -> -. P || 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nprm | |- -. 1 e. Prime |
|
2 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
3 | 2 | nnnn0d | |- ( P e. Prime -> P e. NN0 ) |
4 | dvds1 | |- ( P e. NN0 -> ( P || 1 <-> P = 1 ) ) |
|
5 | 3 4 | syl | |- ( P e. Prime -> ( P || 1 <-> P = 1 ) ) |
6 | eleq1 | |- ( P = 1 -> ( P e. Prime <-> 1 e. Prime ) ) |
|
7 | 6 | biimpcd | |- ( P e. Prime -> ( P = 1 -> 1 e. Prime ) ) |
8 | 5 7 | sylbid | |- ( P e. Prime -> ( P || 1 -> 1 e. Prime ) ) |
9 | 1 8 | mtoi | |- ( P e. Prime -> -. P || 1 ) |