Step |
Hyp |
Ref |
Expression |
1 |
|
nprmi.1 |
|- A e. NN |
2 |
|
nprmi.2 |
|- B e. NN |
3 |
|
nprmi.3 |
|- 1 < A |
4 |
|
nprmi.4 |
|- 1 < B |
5 |
|
nprmi.5 |
|- ( A x. B ) = N |
6 |
|
eluz2b2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) ) |
7 |
|
eluz2b2 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ 1 < B ) ) |
8 |
|
nprm |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. ( A x. B ) e. Prime ) |
9 |
6 7 8
|
syl2anbr |
|- ( ( ( A e. NN /\ 1 < A ) /\ ( B e. NN /\ 1 < B ) ) -> -. ( A x. B ) e. Prime ) |
10 |
1 3 2 4 9
|
mp4an |
|- -. ( A x. B ) e. Prime |
11 |
5
|
eleq1i |
|- ( ( A x. B ) e. Prime <-> N e. Prime ) |
12 |
10 11
|
mtbi |
|- -. N e. Prime |