Metamath Proof Explorer


Theorem nprmi

Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses nprmi.1
|- A e. NN
nprmi.2
|- B e. NN
nprmi.3
|- 1 < A
nprmi.4
|- 1 < B
nprmi.5
|- ( A x. B ) = N
Assertion nprmi
|- -. N e. Prime

Proof

Step Hyp Ref Expression
1 nprmi.1
 |-  A e. NN
2 nprmi.2
 |-  B e. NN
3 nprmi.3
 |-  1 < A
4 nprmi.4
 |-  1 < B
5 nprmi.5
 |-  ( A x. B ) = N
6 eluz2b2
 |-  ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) )
7 eluz2b2
 |-  ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ 1 < B ) )
8 nprm
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. ( A x. B ) e. Prime )
9 6 7 8 syl2anbr
 |-  ( ( ( A e. NN /\ 1 < A ) /\ ( B e. NN /\ 1 < B ) ) -> -. ( A x. B ) e. Prime )
10 1 3 2 4 9 mp4an
 |-  -. ( A x. B ) e. Prime
11 5 eleq1i
 |-  ( ( A x. B ) e. Prime <-> N e. Prime )
12 10 11 mtbi
 |-  -. N e. Prime