| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nprmi.1 |
|- A e. NN |
| 2 |
|
nprmi.2 |
|- B e. NN |
| 3 |
|
nprmi.3 |
|- 1 < A |
| 4 |
|
nprmi.4 |
|- 1 < B |
| 5 |
|
nprmi.5 |
|- ( A x. B ) = N |
| 6 |
|
eluz2b2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) ) |
| 7 |
|
eluz2b2 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ 1 < B ) ) |
| 8 |
|
nprm |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. ( A x. B ) e. Prime ) |
| 9 |
6 7 8
|
syl2anbr |
|- ( ( ( A e. NN /\ 1 < A ) /\ ( B e. NN /\ 1 < B ) ) -> -. ( A x. B ) e. Prime ) |
| 10 |
1 3 2 4 9
|
mp4an |
|- -. ( A x. B ) e. Prime |
| 11 |
5
|
eleq1i |
|- ( ( A x. B ) e. Prime <-> N e. Prime ) |
| 12 |
10 11
|
mtbi |
|- -. N e. Prime |