Metamath Proof Explorer


Theorem nprrel

Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005)

Ref Expression
Hypotheses nprrel12.1
|- Rel R
nprrel.2
|- -. A e. _V
Assertion nprrel
|- -. A R B

Proof

Step Hyp Ref Expression
1 nprrel12.1
 |-  Rel R
2 nprrel.2
 |-  -. A e. _V
3 1 brrelex1i
 |-  ( A R B -> A e. _V )
4 2 3 mto
 |-  -. A R B