Metamath Proof Explorer


Theorem nrex

Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003)

Ref Expression
Hypothesis nrex.1
|- ( x e. A -> -. ps )
Assertion nrex
|- -. E. x e. A ps

Proof

Step Hyp Ref Expression
1 nrex.1
 |-  ( x e. A -> -. ps )
2 1 rgen
 |-  A. x e. A -. ps
3 ralnex
 |-  ( A. x e. A -. ps <-> -. E. x e. A ps )
4 2 3 mpbi
 |-  -. E. x e. A ps