Metamath Proof Explorer


Theorem nrex1

Description: The class of signed reals is a set. Note that a shorter proof is possible using qsex (and not requiring enrer ), but it would add a dependency on ax-rep . (Contributed by Mario Carneiro, 17-Nov-2014) Extract proof from that of axcnex . (Revised by BJ, 4-Feb-2023) (New usage is discouraged.)

Ref Expression
Assertion nrex1
|- R. e. _V

Proof

Step Hyp Ref Expression
1 df-nr
 |-  R. = ( ( P. X. P. ) /. ~R )
2 npex
 |-  P. e. _V
3 2 2 xpex
 |-  ( P. X. P. ) e. _V
4 3 pwex
 |-  ~P ( P. X. P. ) e. _V
5 enrer
 |-  ~R Er ( P. X. P. )
6 5 a1i
 |-  ( T. -> ~R Er ( P. X. P. ) )
7 6 qsss
 |-  ( T. -> ( ( P. X. P. ) /. ~R ) C_ ~P ( P. X. P. ) )
8 7 mptru
 |-  ( ( P. X. P. ) /. ~R ) C_ ~P ( P. X. P. )
9 4 8 ssexi
 |-  ( ( P. X. P. ) /. ~R ) e. _V
10 1 9 eqeltri
 |-  R. e. _V