Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003) (Proof shortened by Wolf Lammen, 5-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nrexdv.1 | |- ( ( ph /\ x e. A ) -> -. ps ) |
|
| Assertion | nrexdv | |- ( ph -> -. E. x e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | |- ( ( ph /\ x e. A ) -> -. ps ) |
|
| 2 | 1 | ralrimiva | |- ( ph -> A. x e. A -. ps ) |
| 3 | ralnex | |- ( A. x e. A -. ps <-> -. E. x e. A ps ) |
|
| 4 | 2 3 | sylib | |- ( ph -> -. E. x e. A ps ) |