Metamath Proof Explorer


Theorem nrexdv

Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003) (Proof shortened by Wolf Lammen, 5-Jan-2020)

Ref Expression
Hypothesis nrexdv.1
|- ( ( ph /\ x e. A ) -> -. ps )
Assertion nrexdv
|- ( ph -> -. E. x e. A ps )

Proof

Step Hyp Ref Expression
1 nrexdv.1
 |-  ( ( ph /\ x e. A ) -> -. ps )
2 1 ralrimiva
 |-  ( ph -> A. x e. A -. ps )
3 ralnex
 |-  ( A. x e. A -. ps <-> -. E. x e. A ps )
4 2 3 sylib
 |-  ( ph -> -. E. x e. A ps )