Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003) (Proof shortened by Wolf Lammen, 5-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nrexdv.1 | |- ( ( ph /\ x e. A ) -> -. ps ) |
|
Assertion | nrexdv | |- ( ph -> -. E. x e. A ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | |- ( ( ph /\ x e. A ) -> -. ps ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. A -. ps ) |
3 | ralnex | |- ( A. x e. A -. ps <-> -. E. x e. A ps ) |
|
4 | 2 3 | sylib | |- ( ph -> -. E. x e. A ps ) |