Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnrg.1 | |- N = ( norm ` R ) |
|
isnrg.2 | |- A = ( AbsVal ` R ) |
||
Assertion | nrgabv | |- ( R e. NrmRing -> N e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrg.1 | |- N = ( norm ` R ) |
|
2 | isnrg.2 | |- A = ( AbsVal ` R ) |
|
3 | 1 2 | isnrg | |- ( R e. NrmRing <-> ( R e. NrmGrp /\ N e. A ) ) |
4 | 3 | simprbi | |- ( R e. NrmRing -> N e. A ) |