Metamath Proof Explorer


Theorem nrgabv

Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses isnrg.1
|- N = ( norm ` R )
isnrg.2
|- A = ( AbsVal ` R )
Assertion nrgabv
|- ( R e. NrmRing -> N e. A )

Proof

Step Hyp Ref Expression
1 isnrg.1
 |-  N = ( norm ` R )
2 isnrg.2
 |-  A = ( AbsVal ` R )
3 1 2 isnrg
 |-  ( R e. NrmRing <-> ( R e. NrmGrp /\ N e. A ) )
4 3 simprbi
 |-  ( R e. NrmRing -> N e. A )