Step |
Hyp |
Ref |
Expression |
1 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
2 |
|
simpr |
|- ( ( R e. NrmRing /\ R e. NzRing ) -> R e. NzRing ) |
3 |
|
eqid |
|- ( norm ` R ) = ( norm ` R ) |
4 |
|
eqid |
|- ( AbsVal ` R ) = ( AbsVal ` R ) |
5 |
3 4
|
nrgabv |
|- ( R e. NrmRing -> ( norm ` R ) e. ( AbsVal ` R ) ) |
6 |
5
|
ne0d |
|- ( R e. NrmRing -> ( AbsVal ` R ) =/= (/) ) |
7 |
6
|
adantr |
|- ( ( R e. NrmRing /\ R e. NzRing ) -> ( AbsVal ` R ) =/= (/) ) |
8 |
4
|
abvn0b |
|- ( R e. Domn <-> ( R e. NzRing /\ ( AbsVal ` R ) =/= (/) ) ) |
9 |
2 7 8
|
sylanbrc |
|- ( ( R e. NrmRing /\ R e. NzRing ) -> R e. Domn ) |
10 |
9
|
ex |
|- ( R e. NrmRing -> ( R e. NzRing -> R e. Domn ) ) |
11 |
1 10
|
impbid2 |
|- ( R e. NrmRing -> ( R e. Domn <-> R e. NzRing ) ) |