Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( norm ` R ) = ( norm ` R ) |
|
| 2 | eqid | |- ( AbsVal ` R ) = ( AbsVal ` R ) |
|
| 3 | 1 2 | isnrg | |- ( R e. NrmRing <-> ( R e. NrmGrp /\ ( norm ` R ) e. ( AbsVal ` R ) ) ) |
| 4 | 3 | simplbi | |- ( R e. NrmRing -> R e. NrmGrp ) |