Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( norm ` R ) = ( norm ` R ) |
|
2 | eqid | |- ( AbsVal ` R ) = ( AbsVal ` R ) |
|
3 | 1 2 | nrgabv | |- ( R e. NrmRing -> ( norm ` R ) e. ( AbsVal ` R ) ) |
4 | 2 | abvrcl | |- ( ( norm ` R ) e. ( AbsVal ` R ) -> R e. Ring ) |
5 | 3 4 | syl | |- ( R e. NrmRing -> R e. Ring ) |