Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( norm ` R ) = ( norm ` R ) |
|
| 2 | eqid | |- ( AbsVal ` R ) = ( AbsVal ` R ) |
|
| 3 | 1 2 | nrgabv | |- ( R e. NrmRing -> ( norm ` R ) e. ( AbsVal ` R ) ) |
| 4 | 2 | abvrcl | |- ( ( norm ` R ) e. ( AbsVal ` R ) -> R e. Ring ) |
| 5 | 3 4 | syl | |- ( R e. NrmRing -> R e. Ring ) |