Step |
Hyp |
Ref |
Expression |
1 |
|
nrgtrg |
|- ( R e. NrmRing -> R e. TopRing ) |
2 |
1
|
adantr |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. TopRing ) |
3 |
|
simpr |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. DivRing ) |
4 |
|
nrgring |
|- ( R e. NrmRing -> R e. Ring ) |
5 |
4
|
adantr |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. Ring ) |
6 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
7 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
8 |
6 7
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
9 |
5 8
|
syl |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
10 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
11 |
10
|
trgtmd |
|- ( R e. TopRing -> ( mulGrp ` R ) e. TopMnd ) |
12 |
2 11
|
syl |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> ( mulGrp ` R ) e. TopMnd ) |
13 |
6 10
|
unitsubm |
|- ( R e. Ring -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
14 |
5 13
|
syl |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
15 |
7
|
submtmd |
|- ( ( ( mulGrp ` R ) e. TopMnd /\ ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopMnd ) |
16 |
12 14 15
|
syl2anc |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopMnd ) |
17 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
18 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
19 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
20 |
17 6 18 19
|
nrginvrcn |
|- ( R e. NrmRing -> ( invr ` R ) e. ( ( ( TopOpen ` R ) |`t ( Unit ` R ) ) Cn ( ( TopOpen ` R ) |`t ( Unit ` R ) ) ) ) |
21 |
20
|
adantr |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> ( invr ` R ) e. ( ( ( TopOpen ` R ) |`t ( Unit ` R ) ) Cn ( ( TopOpen ` R ) |`t ( Unit ` R ) ) ) ) |
22 |
10 19
|
mgptopn |
|- ( TopOpen ` R ) = ( TopOpen ` ( mulGrp ` R ) ) |
23 |
7 22
|
resstopn |
|- ( ( TopOpen ` R ) |`t ( Unit ` R ) ) = ( TopOpen ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) |
24 |
6 7 18
|
invrfval |
|- ( invr ` R ) = ( invg ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) |
25 |
23 24
|
istgp |
|- ( ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopGrp <-> ( ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp /\ ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopMnd /\ ( invr ` R ) e. ( ( ( TopOpen ` R ) |`t ( Unit ` R ) ) Cn ( ( TopOpen ` R ) |`t ( Unit ` R ) ) ) ) ) |
26 |
9 16 21 25
|
syl3anbrc |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopGrp ) |
27 |
10 6
|
istdrg |
|- ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopGrp ) ) |
28 |
2 3 26 27
|
syl3anbrc |
|- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. TopDRing ) |