Description: A normed ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nrgtgp | |- ( R e. NrmRing -> R e. TopGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
|
2 | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
|
3 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
4 | 2 3 | syl | |- ( R e. NrmRing -> R e. Abel ) |
5 | ngptgp | |- ( ( R e. NrmGrp /\ R e. Abel ) -> R e. TopGrp ) |
|
6 | 1 4 5 | syl2anc | |- ( R e. NrmRing -> R e. TopGrp ) |