Metamath Proof Explorer


Theorem nrmhaus

Description: A T_1 normal space is Hausdorff. A Hausdorff or T_1 normal space is also known as a T_4 space. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmhaus
|- ( J e. Nrm -> ( J e. Haus <-> J e. Fre ) )

Proof

Step Hyp Ref Expression
1 haust1
 |-  ( J e. Haus -> J e. Fre )
2 nrmreg
 |-  ( ( J e. Nrm /\ J e. Fre ) -> J e. Reg )
3 2 ex
 |-  ( J e. Nrm -> ( J e. Fre -> J e. Reg ) )
4 t1t0
 |-  ( J e. Fre -> J e. Kol2 )
5 reghaus
 |-  ( J e. Reg -> ( J e. Haus <-> J e. Kol2 ) )
6 4 5 syl5ibrcom
 |-  ( J e. Fre -> ( J e. Reg -> J e. Haus ) )
7 3 6 sylcom
 |-  ( J e. Nrm -> ( J e. Fre -> J e. Haus ) )
8 1 7 impbid2
 |-  ( J e. Nrm -> ( J e. Haus <-> J e. Fre ) )