Step |
Hyp |
Ref |
Expression |
1 |
|
nrmtngdist.t |
|- T = ( G toNrmGrp ( norm ` G ) ) |
2 |
|
nrmtngdist.x |
|- X = ( Base ` G ) |
3 |
|
fvex |
|- ( norm ` G ) e. _V |
4 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
5 |
1 4
|
tngds |
|- ( ( norm ` G ) e. _V -> ( ( norm ` G ) o. ( -g ` G ) ) = ( dist ` T ) ) |
6 |
3 5
|
ax-mp |
|- ( ( norm ` G ) o. ( -g ` G ) ) = ( dist ` T ) |
7 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
8 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
9 |
|
eqid |
|- ( ( dist ` G ) |` ( X X. X ) ) = ( ( dist ` G ) |` ( X X. X ) ) |
10 |
7 4 8 2 9
|
isngp2 |
|- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( ( norm ` G ) o. ( -g ` G ) ) = ( ( dist ` G ) |` ( X X. X ) ) ) ) |
11 |
10
|
simp3bi |
|- ( G e. NrmGrp -> ( ( norm ` G ) o. ( -g ` G ) ) = ( ( dist ` G ) |` ( X X. X ) ) ) |
12 |
6 11
|
eqtr3id |
|- ( G e. NrmGrp -> ( dist ` T ) = ( ( dist ` G ) |` ( X X. X ) ) ) |