Description: Any substitution in an always false formula is false. (Contributed by Steven Nguyen, 3-May-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nsb | |- ( A. x -. ph -> -. [ t / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
2 | 1 | biimpi | |- ( A. x -. ph -> -. E. x ph ) |
3 | spsbe | |- ( [ t / x ] ph -> E. x ph ) |
|
4 | 2 3 | nsyl | |- ( A. x -. ph -> -. [ t / x ] ph ) |