Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 3 | 1 2 | isnsg | |- ( S e. ( NrmSGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. S <-> ( y ( +g ` G ) x ) e. S ) ) ) |
| 4 | 3 | simplbi | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |