Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
3 | 1 2 | isnsg | |- ( S e. ( NrmSGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. S <-> ( y ( +g ` G ) x ) e. S ) ) ) |
4 | 3 | simplbi | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |