| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m |  |-  M = ( EndoFMnd ` NN0 ) | 
						
							| 2 |  | smndex1ibas.n |  |-  N e. NN | 
						
							| 3 |  | smndex1ibas.i |  |-  I = ( x e. NN0 |-> ( x mod N ) ) | 
						
							| 4 |  | smndex1ibas.g |  |-  G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) | 
						
							| 5 |  | smndex1mgm.b |  |-  B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) | 
						
							| 6 |  | smndex1mgm.s |  |-  S = ( M |`s B ) | 
						
							| 7 | 1 2 3 4 5 6 | smndex1n0mnd |  |-  ( 0g ` M ) e/ B | 
						
							| 8 | 7 | neli |  |-  -. ( 0g ` M ) e. B | 
						
							| 9 | 8 | intnan |  |-  -. ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) | 
						
							| 10 | 9 | intnan |  |-  -. ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 13 | 11 12 | issubmndb |  |-  ( B e. ( SubMnd ` M ) <-> ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) ) | 
						
							| 14 | 10 13 | mtbir |  |-  -. B e. ( SubMnd ` M ) | 
						
							| 15 | 14 | nelir |  |-  B e/ ( SubMnd ` M ) |