Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
|- M = ( EndoFMnd ` NN0 ) |
2 |
|
smndex1ibas.n |
|- N e. NN |
3 |
|
smndex1ibas.i |
|- I = ( x e. NN0 |-> ( x mod N ) ) |
4 |
|
smndex1ibas.g |
|- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
5 |
|
smndex1mgm.b |
|- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
6 |
|
smndex1mgm.s |
|- S = ( M |`s B ) |
7 |
1 2 3 4 5 6
|
smndex1n0mnd |
|- ( 0g ` M ) e/ B |
8 |
7
|
neli |
|- -. ( 0g ` M ) e. B |
9 |
8
|
intnan |
|- -. ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) |
10 |
9
|
intnan |
|- -. ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) |
11 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
12 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
13 |
11 12
|
issubmndb |
|- ( B e. ( SubMnd ` M ) <-> ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) ) |
14 |
10 13
|
mtbir |
|- -. B e. ( SubMnd ` M ) |
15 |
14
|
nelir |
|- B e/ ( SubMnd ` M ) |