Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
|- ( A F B ) = ( F ` <. A , B >. ) |
2 |
|
ssel2 |
|- ( ( dom F C_ ( R X. S ) /\ <. A , B >. e. dom F ) -> <. A , B >. e. ( R X. S ) ) |
3 |
|
opelxp |
|- ( <. A , B >. e. ( R X. S ) <-> ( A e. R /\ B e. S ) ) |
4 |
2 3
|
sylib |
|- ( ( dom F C_ ( R X. S ) /\ <. A , B >. e. dom F ) -> ( A e. R /\ B e. S ) ) |
5 |
4
|
stoic1a |
|- ( ( dom F C_ ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> -. <. A , B >. e. dom F ) |
6 |
|
ndmfv |
|- ( -. <. A , B >. e. dom F -> ( F ` <. A , B >. ) = (/) ) |
7 |
5 6
|
syl |
|- ( ( dom F C_ ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> ( F ` <. A , B >. ) = (/) ) |
8 |
1 7
|
eqtrid |
|- ( ( dom F C_ ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> ( A F B ) = (/) ) |