Metamath Proof Explorer


Theorem nssinpss

Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion nssinpss
|- ( -. A C_ B <-> ( A i^i B ) C. A )

Proof

Step Hyp Ref Expression
1 inss1
 |-  ( A i^i B ) C_ A
2 1 biantrur
 |-  ( ( A i^i B ) =/= A <-> ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) )
3 df-ss
 |-  ( A C_ B <-> ( A i^i B ) = A )
4 3 necon3bbii
 |-  ( -. A C_ B <-> ( A i^i B ) =/= A )
5 df-pss
 |-  ( ( A i^i B ) C. A <-> ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) )
6 2 4 5 3bitr4i
 |-  ( -. A C_ B <-> ( A i^i B ) C. A )