Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nssne2 | |- ( ( A C_ C /\ -. B C_ C ) -> A =/= B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |
|
2 | 1 | biimpcd | |- ( A C_ C -> ( A = B -> B C_ C ) ) |
3 | 2 | necon3bd | |- ( A C_ C -> ( -. B C_ C -> A =/= B ) ) |
4 | 3 | imp | |- ( ( A C_ C /\ -. B C_ C ) -> A =/= B ) |