Metamath Proof Explorer


Theorem nsstr

Description: If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion nsstr
|- ( ( -. A C_ B /\ C C_ B ) -> -. A C_ C )

Proof

Step Hyp Ref Expression
1 sstr
 |-  ( ( A C_ C /\ C C_ B ) -> A C_ B )
2 1 ancoms
 |-  ( ( C C_ B /\ A C_ C ) -> A C_ B )
3 2 adantll
 |-  ( ( ( -. A C_ B /\ C C_ B ) /\ A C_ C ) -> A C_ B )
4 simpll
 |-  ( ( ( -. A C_ B /\ C C_ B ) /\ A C_ C ) -> -. A C_ B )
5 3 4 pm2.65da
 |-  ( ( -. A C_ B /\ C C_ B ) -> -. A C_ C )