| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noel |  |-  -. A e. (/) | 
						
							| 2 |  | sucidg |  |-  ( A e. _V -> A e. suc A ) | 
						
							| 3 |  | eleq2 |  |-  ( suc A = (/) -> ( A e. suc A <-> A e. (/) ) ) | 
						
							| 4 | 2 3 | syl5ibcom |  |-  ( A e. _V -> ( suc A = (/) -> A e. (/) ) ) | 
						
							| 5 | 1 4 | mtoi |  |-  ( A e. _V -> -. suc A = (/) ) | 
						
							| 6 |  | 0ex |  |-  (/) e. _V | 
						
							| 7 |  | eleq1 |  |-  ( A = (/) -> ( A e. _V <-> (/) e. _V ) ) | 
						
							| 8 | 6 7 | mpbiri |  |-  ( A = (/) -> A e. _V ) | 
						
							| 9 | 8 | con3i |  |-  ( -. A e. _V -> -. A = (/) ) | 
						
							| 10 |  | sucprc |  |-  ( -. A e. _V -> suc A = A ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( -. A e. _V -> ( suc A = (/) <-> A = (/) ) ) | 
						
							| 12 | 9 11 | mtbird |  |-  ( -. A e. _V -> -. suc A = (/) ) | 
						
							| 13 | 5 12 | pm2.61i |  |-  -. suc A = (/) | 
						
							| 14 | 13 | neir |  |-  suc A =/= (/) |