Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 2-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nsyl.1 | |- ( ph -> -. ps ) |
|
| nsyl.2 | |- ( ch -> ps ) |
||
| Assertion | nsyl | |- ( ph -> -. ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl.1 | |- ( ph -> -. ps ) |
|
| 2 | nsyl.2 | |- ( ch -> ps ) |
|
| 3 | 1 2 | nsyl3 | |- ( ch -> -. ph ) |
| 4 | 3 | con2i | |- ( ph -> -. ch ) |