Metamath Proof Explorer
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994)
(Proof shortened by Wolf Lammen, 14-Nov-2023)
|
|
Ref |
Expression |
|
Hypotheses |
nsyl2.1 |
|- ( ph -> -. ps ) |
|
|
nsyl2.2 |
|- ( -. ch -> ps ) |
|
Assertion |
nsyl2 |
|- ( ph -> ch ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nsyl2.1 |
|- ( ph -> -. ps ) |
2 |
|
nsyl2.2 |
|- ( -. ch -> ps ) |
3 |
1 2
|
nsyl3 |
|- ( -. ch -> -. ph ) |
4 |
3
|
con4i |
|- ( ph -> ch ) |