Metamath Proof Explorer


Theorem nsyl3

Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995)

Ref Expression
Hypotheses nsyl3.1
|- ( ph -> -. ps )
nsyl3.2
|- ( ch -> ps )
Assertion nsyl3
|- ( ch -> -. ph )

Proof

Step Hyp Ref Expression
1 nsyl3.1
 |-  ( ph -> -. ps )
2 nsyl3.2
 |-  ( ch -> ps )
3 1 a1i
 |-  ( ch -> ( ph -> -. ps ) )
4 2 3 mt2d
 |-  ( ch -> -. ph )