Metamath Proof Explorer


Theorem nsyl4

Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996)

Ref Expression
Hypotheses nsyl4.1
|- ( ph -> ps )
nsyl4.2
|- ( -. ph -> ch )
Assertion nsyl4
|- ( -. ch -> ps )

Proof

Step Hyp Ref Expression
1 nsyl4.1
 |-  ( ph -> ps )
2 nsyl4.2
 |-  ( -. ph -> ch )
3 2 con1i
 |-  ( -. ch -> ph )
4 3 1 syl
 |-  ( -. ch -> ps )